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In view of the considerable expansion of the field of use of composites in technology 
and an increase in their weight fraction within the total volume of material consumed in pre- 
paring articles it is very important to predict the strength characteristics of structures 
made of composites with short-term, prolonged, and cyclic loads. There is an extensive list 
of literature on this problem. The scientific bases of the calculation are given in [i, 2]. 
Experimental determination of the fatigue characteristics of composites which have a rela- 
tively simple structure were the subject in [3-6]. 

A procedure is suggested in the present work for finding the supporting capacity of thin 
layered composite shells with cyclic loading by proceeding from the corresponding fatigue 
characteristics, thickness, and orientations of individual layers in a composite. Layered 
composites formed by superimposing quasiuniform orthotropic layers are considered. Assump- 
tions about the nature of the stress-strained state which are made by us do not limit the 
applicability of this procedure. 

A layer with number j (j = i, n, n is number of layers) is referred to a coordinate 
system (Oxyz)j whose axes coincide with the orthotropic axes of the j-th layer (zj is orthog- 

onal to its central surface). We introduce a global system Ogz~2z, the directions of whose 
axes gz, $2 are connected with the principal lines of curvature of the shell. The orienta- 
tion of the j-th layer in the structure of a composite shell is determined by the value of 
angle ~j, read from ~z to xj. The effect of stress tensor components Oxz, Oyz, Ozz on the 

failure process is ignored. Maximum and minimum stresses in the cycle are derived by the 
well-known equation 

' ~  = o~ -+ ~ ,  ~, ~ = ~, u V l ,  2. 
mir,.. 

Here Om~ are average stresses in the cycle; Oa~$ are amplitude values of the variable part 
of stresses (in future the same index may occupy both the upper and lower position). 

The condition for reaching the limiting state for the j-th layer with prescribed endu- 
rance N (N is number of cycles to failure) is written in the form 

a 2 . ,  

( l )  

In the space of values Om~ , Oa~$ Eq. (i) corresponds to some surface (hypersurface) which 
is a generalized limiting amplitude diagram (Hay diagram). In recording (i) assumptions are 
considered about the nature of the stress-strain state. The requirement for invariance of 
(i) with respect to transformation of xj into -xj and yj into -yj leads to the requirement 

for equality to zero of terms linear with respect to Oxy. With Oma~ ~ 0 (~, B = x, y) (i) 

should describe a surface in the space of Oaa$ whose center of symmetry coincides with the 
origin. Therefore, there are no terms in it containing only oaXX, oaYY. The section of sur- 

face (i) with planes (Oma~ , Oa~$) (~, ~ = x, y) should be symmetrical with respect to the 

axis of Om~ (for this reason it is only possible to depict the Hay diagram for positive o a 
in system omOaa), and therefore there are terms in (i) with derivatives Om~Oaa~. Coeffi- 

cients alJ, .... a~J in (i) are determined from the results of testing with short-term static 
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loading, and coefficients bzJ(N), .... b~J(N) are determined with symmetrical cycles. In 

order to find bzJ, ..., b~J it is necessary to plot fatigue curves (Weller curves). In order 
to plot each individual fatigue curve it is necessary by retaining a constant direction for 

the 'vector' with components of Oa~$ , to change only its length and to calculate the corre- 
sponding endurance values. By analogy with the concepts of characteristic loading paths and 
characteristic strengths [I, p. 241] it is useful to introduce concepts of characteristics 
directions for the 'vector' with components of Oa ~ and characteristic fatigue curves. Ana- 
lytical approximation of experimental fatigue curves (or their individual sections) makes it 
possible to consider coefficients bz3, .... b~J as functions of endurance N. 

Formally we reduce the problem of the supporting capacity of layered composite shells 
with cyclic loading to the problem of their strength with short-term static loading. In (i) 
the group of terms contained in the second bracket we denote as 

Let the terms for stresses Oa~$ enter into a collection of original conditions of the problem 

(permissible regions of their values are established using the inequality 0 ! ma j ! i). Tak- 
ing this into account (i) assumes the form 

~2 ~ . 6 o ~ ) ~  = t - -  o ~ .  ( 2 )  (a 1 ~ + 2a2o=% ~ + aao~y + 2 a 4 ~  + 2asa~y + a _2 ~J J 

It is suggested that after determining the number of cycles of force action the process of 
damage accumulation (scattered throughout the volume) reaches that level when the effective 
cross section (for the solid part of the material) becomes quite small, and the level of 
stresses in the material reaches a critical value which leads to intense deformation and sub- 
sequent failure. The condition of the material with which intense development of deformation 
commences (strain rates are high) is naturally taken as the post-limit condition (in time it 
immediately precedes endurance N). On the basis of this in order to solve the stated problem 
it is possible to use a procedure given in detail in [7]. The criterion for loss of support- 
ing capacity (2) in the system 

cI)j = (Ao~I + 2B%1%2 + C(r~ + 2D%1 + 

+ 2E%2 + L ( ~  + 2P(~n% ~ + 2R(~22cq2 -4- 2Q(~12)~n q- Fj = O, 

(3) 

where Fj = ma j - i; Aj, ..., Qj depend linearly on alJ ..... a63 and are functions of the 

orientation of the j-th layer in bundle ~j. Equation (3) is an equation of the limiting sur- 
face in the space of values of Om~ (the free term depends on prescribed values of Oa~). 
We assume that the limiting material condition is stable, i.e., the Drucker postulation is 
valid [8]. Whence it follows that the limiting surface should be convex. Stresses Om~ en- 
ter as generalized forces [8]. The velocity vector for the corresponding generalized dis- 
placements (with components ~$) according to the Drucker postulation should be directed 
along the external normal to surface (3): 

~ should not be identified with traditional strain rates for a solid. Here they enter into 
the role of kinematic parameters representing generalized displacement rates which satisfy 
the condition dodg ~ 0 (hypothesis). We write briefly the further course of solving the 

problem (see [7]). By using (3) and (4) we determine ~J. We solve the set of equations 

obtained with respect to (Om~) j. By substituting (Om~) j in (3) we express ij g 0 in terms 

of ~BJ. We assume that in expanding kinematic characteristics $~$J into a series with re- 
spect to z it is sufficient to retain the linear part (hypothesis): 

. . 

4~=e=~--z• ~, ~=i, 2 

(axis z is orthogonal to the reduction surface of the shell So, where z = 0). We calculate 
the static terms of linear forces and moments reduced to So: 

i22 
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where zlj < z2j are the coordinates of points which lie at the restraining surfaces of the 

j-th layer; a, B = i, 2. As a result of this 

T i,,~ = ~ 0.5 6{h (I~:k --/.)j• - -  Ai jh j  A j; 
j~l h:l 

M~ = ~ 0.5 ~ (4ji.~ - -  4 : ~ )  - -  m j h : j  Aj. 
j~l h = l  

(5) 

Here i = i, 3; T~ m T~a; Ma m M~; Sam $~; • m • (~ = i, 2); T 3 ~ TI2 ; M s ~ MI2 ; Ss ~ 

$12; z3 ~ • hj = (z2j - zlj)/2 ; zj = (z2j + zlj)/2 ; Aj, Aij, 6ik j are determinants whose 

elements are coefficients from (3) (see [7]). Integrals Iij are calculated according to the 
expression 

z2j 

I~j = S (:~-Vij) dz, i =  1, 3. 
Zlj 

Equations (5) are parametric equations of the limiting surface for layered composite shells 
in a space of static terms of forces and moments. Values of Tma~, Mma~ in (5) operating to- 
gether with cyclic forces and moments (their amplitude values are determined by terms for 
stresses Oaa~ ) on reaching the number of loading cycles N bring the composite shell to fa- 
tigue failure. Hypersurface (5) in the space of values Tma~, Mm~ is a section of the more 
general limiting surface (surface of static strength and limited endurance) with a hypersur- 
face passing through the end of the 'vector' whose components are determined by amplitude val- 
ues of Oa~ of the variable part of stresses orthogonal to this 'vector.' 

With the aim of reducing the amount of experimental work required for calculating the 
coefficients of Eq. (i) it is possible to use conclusions given in [4] where it was shown 
that stable correlation between o_ I and Omin* (o-i is fatigue strength with endurance N corre- 
sponding to symmetrical cycles, Omin* is the least of the limits of proportionality with 
static tension and compression along the same direction) does not depend on the direction of 
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cutting specimens for a given reinforced plate. This may be used for considerable shortening 
of the number of fatigue tests for orientated composite materials. 

As an example of using relationships (5) we give the solution of the problem of the lim- 
iting condition of a cylindrical shell with stiffened ends. The shell is loaded by axial 
force PI, internal pressure P2, and torsional moment M t (positive loading directions are 
shown in Fig. i). We introduce dimensionless parameters o~$* = o~/o0, t~$ = T~/o0H, m t = 

Mt/2o0HA, Pl = Pl/~dHo0, P2 = P2( d - H)2/2dHo0 �9 Here a 0 is a value having the dimension of 
stresses; H is shell thickness; d is its diameter; A is an area bounded by the contour of a 
transverse section of the shell. Statics equations give the following relationships between 
parameters of external loads and internal forces: 

P I  = tn -- 0,5t22,  p~ = t2~, mt = t n .  (6) 

The criterion for loss of supporting capacity for the j-th layer with cyclic loading has 
the form (for convenience the * for dimensionless stresses is omitted) 

( i . 5 0 ~  -- 2 .45~y~ + 4.780~ -- 38 .2~  -- 40.7ayy + 

+ 26,1o~y)m = 1399,3- co~a, (7) 

where 

' =  o " __ 2 t399,3o~)a. 
(8) 

In writing (7) and (8) experimental results provided in [5] for a test base of N = i0 ~ cycles 
(for standard fiber glass laminate VFT-S) are used. Stresses are referred to o 0 = o_ixY = 
8.45 MPa. 

Given in Figs. 2 and 3 are different limiting curves plotted in the plane of parameters 
(Plm, P2m) using relationships (5)-(8) (static terms are denoted by index m, and amplitude 
values of the variable part of the load are denoted by index a). Results given in Fig. 2 
were obtained for cases when the orientation angle ~j for all of the layers equals zero, and 
in Fig. 3 for shells in which layers with a winding angle +45 ~ alternate with layers with an 
angle of -45 ~ . Everywhere the number of layers equals eleven. Curves 1 in Figs. 2 and 3 
correspond to the case when the cycle amplitude equals zero (strength curves with short-term 
static loading). Curves 2 and 3 in Fig. 2 relate to amplitude values of the variable part 
of load parameters Pla = 5, P2a = mta = 0 and Pla = 7.035, P2a = mta = 0, respectively. An- 
other curve is placed very close to curve 3 when parameters of the amplitude components of 
loads are as follows: Pla = P2a = 0, mta = 0.99 (some of its points are placed within tri- 
angles). Similarly in Fig. 3 curves 2 and 3 with Pla = 1.5, P2a = mta = 3 and Pla = P2a = 0, 
mta = 3. Another curve is placed very close to curve 3 in Fig. 3 with the parameters Pla = 
-1.435, P2a = mta = 0.95 (some of its points are placed within triangles). 

On the basis of the results provided above it is possible to conclude that the method 
developed for determining the supporting capacity of layered composite shells with cyclic 
loading makes it possible to obtain a qualitatively correct picture of this phenomenon. The 
procedure gives reference points in determining the parameters of reinforced materials in 
order to find the fatigue strength of structures prepared from these materials. In fact, in 
order to check the quantitative conformity of the results obtained it is necessary to carry 
out new experimental studies. 

The method suggested also helps in carrying out the reverse course: from tests on a 
layered composite, i.e., a specimen with a prescribed structure, to draw conclusions about 
the properties of a monolayer and then to apply these results by the method suggested to a 
composite with another layer configuration. 
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APPROXIMATE ANALYSIS OF THE THERMAL OPERATING REGIME OF A CHAMBER FOR 

TREATING MATERIALS WITH THERMAL ENERGY* 

P. L. Abiduev and V. M. Kornev UDC 537.32 

A thermal operating regime is studied for the walls of a chamber for deburring materials. 
Often these chambers are made in the form of thin-walled cylindrical vessels whose walls have 
thermal protection (a thin internal layer of material with high thermal conductivity). The 
chamber wall is modeled by an infinite two-layer plate, the external surface of the plate is 
maintained at a prescribed temperature, and at the internal surface the heat flow is pre- 
scribed [i] characterizing the heat transfer of gas mixture detonation products into the 
chamber wall. It is assumed that at the interface of the layers a condition of ideal thermal 
contact is fulfilled. The chamber operating regime for deburring materials is defined by the 
periodicity of treatment cycles which as a rule are 15-20 sec. 

The temperature field for the chamber wall is constructed both for the first cycle and 
with several of the first treatment cycles. The construction with the first cycle is carried 
out by two standard methods. It is revealed that introducing thermal protection makes it 
possible to reduce by several factors the temperature of the internal surface and to increase 
by about an order of magnitude the time for reaching the maximum temperature of the internal 
surface compared with a single-layer chamber. 

The temperature field in a time interval corresponding to five material treatment cycles 
is obtained by the method of numerical modeling (Fig. I). The broken line relates to a sin- 
gle-layer chamber wall, and the solid line relates to a two-layer chamber. It can be seen 
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